zilog

CUSTOMER PROCUREMENT SPECIFICATION

Z86C90/C89 ROMLESS CMOS Z8® 8-BIT MICROCONTROLLER

GENERAL DESCRIPTION

The Z86C90/C89 CCP™ (Consumer Controller Processor) introduces a new level of sophistication to single-chip architecture. The Z86C90/C89 are ROMless members of the Z8 single-chip microcontroller family with 236 bytes of general purpose RAM. The only difference that exists between the Z86C89 and the Z86C90 is that the on-chip oscillator of the Z86C89 can accept an external RC network or other external clock source, while the Z86C90's on-chip oscillator accepts a crystal, ceramic resonator, LC, or external clock source drive. The CCP controllers are housed in a 40-pin DIP, 44-pin Leaded Chip Carrier, or a 44-pin LQFP and are CMOS compatible. The CCP offers the use of external memory which enables this Z8 microcomputer to be used where code flexibility is required. Zilog's CMOS microcomputer offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

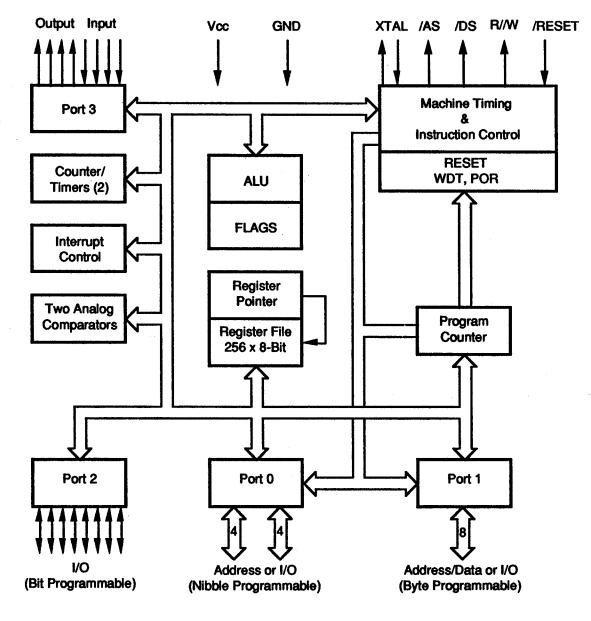
The Z86C90/C89 architecture is based on Zilog's 8-bit microcontroller core with an Expanded Register File to allow access to register mapped peripheral and I/O circuits. The CCP offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many industrial, automotive, computer peripherals, and advanced scientific applications.

The CCP applications demand powerful I/O capabilities. The Z86C90/C89 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports. Each

port consists of eight lines, and is configurable under software control to provide timing, status signals, parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

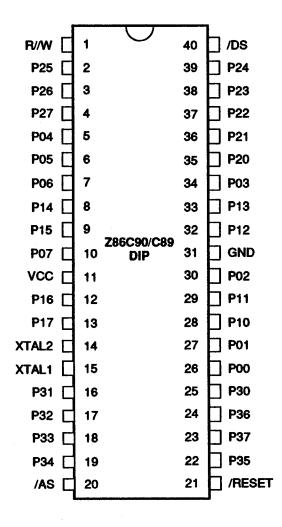
There are four basic address spaces available to support this wide range of configurations: Program Memory, Register File, Data Memory, and Expanded Register File. The Register File is composed of 236 bytes of general purpose registers, four I/O port registers, and fifteen control and status registers. The Expanded Register File consists of two control registers.

To unburden the program from coping with the real-time problems, such as counting/timing and data communication, the Z86C90/C89 offers two on-chip counter/timers. Included are a large number of user selectable modes, and two on-board comparators to process analog signals with a common reference voltage (see Functional Block Diagram).

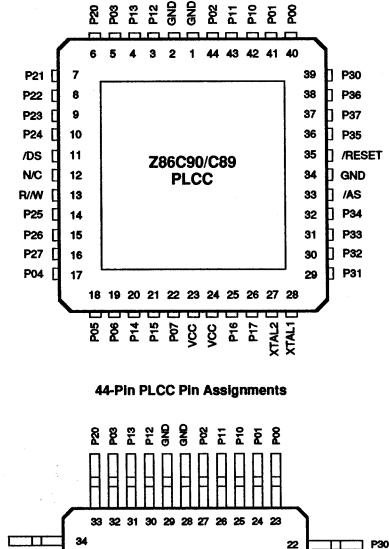

Notes:

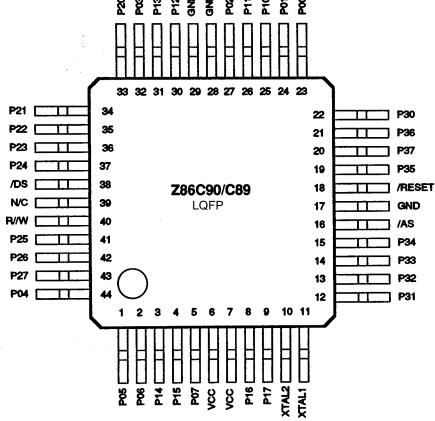
All Signals with a preceding front slash, '/", are active Low, e.g.: B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

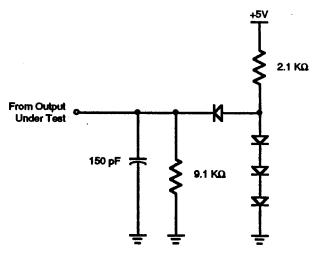

Connection	Circuit	Device
Power		V _{DD}
Ground	GND	V _{ss}

GENERAL DESCRIPTION (Continued)


Functional Block Diagram


PIN DESCRIPTION

PIN DESCRIPTION (Continued)



44-Pin LQFP Pin Assignments

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Test Load Diagram).

Test Load Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
V _{cc}	Supply Voltage (*)	-0.3	+7.0	V
	Storage Temp	-65°	+150°	С
'stg T	Oper Ambient Temp		†	C
	Power Dissipation		2.2	W

Notes:

e . .

* Voltage on all pins with respect to GND.

† See Ordering Information.

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

CAPACITANCE

 $T_A = 25^{\circ}C$, $V_{cc} = GND = 0V$, f = 1.0 MHz, unmeasured pins to GND

Parameter	Max
Input capacitance	12 pF
Output capacitance	12 pF
I/O capacitance	12 pF

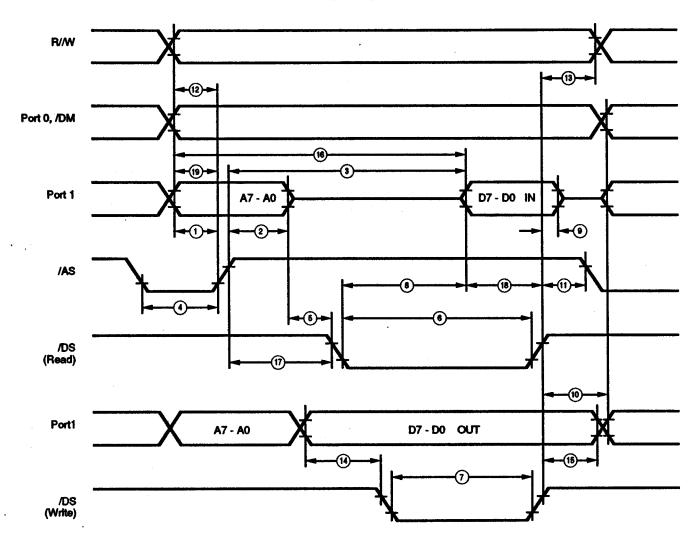
PLEASE NOTE

These devices will not operate in extended timing mode. Set Register 248, D5 = 0.

DC CHARACTERISTICS

Sym	Parameter	V _{cc}	$T_A = 0^{\circ}$	°C	T _A = -40	°C	Тур @	Units	Conditions	Notes
		Note [3]	tö 70° Min	°C Max	tõ 105° Min	' C Max	25°C			
	Max Input Voltage	3.3V		7		7		٧	l _n 250µА	
		5.0V		7		7		V	l <mark></mark> 250µA	
V _{CH}	Clock Input High Voltage	3.3V	0.7 V _{cc}	V _{cc} +0.3	0.7 V _{cc}	V _{cc} +0.3	1.3	v	Driven by External Clock Generator	
		5.0V	0.7 V _{cc}	V _{cc} +0.3	0.7 V _{cc}	V _{cc} +0.3	2.5	۷	Driven by External Clock Generator	
Va	Clock Input Low Voltage	3.3V	GND -0.3	0.2 V _{cc}	GND-0.3	0.2 V _{cc}	0.7	۷	Driven by External Clock Generator	
		5.0V	GND-0.3	0.2 V _{cc}	GND-0.3	0.2 V _{cc}	1.5	V	Driven by External Clock Generator	
V	Input High Voltage	3.3V	$0.7 V_{cc}$	V _{cc} +0.3	$0.7 V_{cc}$	V_{∞} +0.3	1.3	V		
m 1	, , ,	5.0V	0.7 V _{cc}	V _{cc} +0.3	0.7 V _{cc}	V _{cc} +0.3	2.5	V		
V _r	Input Low Voltage	3.3V	GND-Õ.3	0.2 V _{cc}	GND-0.3	0.2 V _{cc}	0.7	V		
•		5.0V	GND-0.3	0.2 V _{cc}	GND-0.3	0.2 V _{cc}	1.5	۷		
V _{OH}	Output High Voltge	3.3V	V _{cc} -0.4	<u></u>	V _{cc} -0.4		3.1	٧	$I_{oH} = -2.0 \text{ mA}$	
		5.0V	V _{cc} -0.4		۷ _{cc} -0.4		4.8	V	I _m = -2.0 mA	
Vali	Output Low Voltage	3.3V		0.6		0.6	0.2	V	l _{oH} = +4.0 mA	
		5.0V		0.4		0.4	0.1	· V	$I_{oL} = +4.0 \text{ mA}$	
V _{OL2}	Output Low Voltage	3.3V		1.2		1.2	0.3	V	$I_{oL} = +6 \text{ mA},$ 3 Pin Max	
		5.0V		1.2		1.2	0.3	V	I _{oL} = +12 mA, 3 Pin Max	
V _{RH}	Reset Input	3.3V	.8 V _{cc}	V _{cc}	.8 V _{cc}	V _{cc}	1.5	٧		
	High Voltage	5.0V	.8 V _{cc}	۷ _{cc}	.8 V _{cc}	Vm	2.1	V		
V _{RI}	Reset Input	3.3V	GND-0.3	0.2 V _{cc}	GND-0.3	0.2 V _{cc}	1.1			
	Low Voltage	5.0V	GND-0.3	0.2 V _{cc}	GND-0.3	0.2 V _{cc}	1.7			
V _{offset}	Comparator Input	3.3V		25		25	10	mV		
UTSET	Offset Voltage	5.0V		25		2 5 .	10	mV		
<u>l</u>	Input Leakage	3.3V	-1	1	-1	2	<1	μA	$V_{\rm IN} = 0V, V_{\rm CC}$	
-		5.0V	-1	1	-1	2	<1	μA	$V_{\rm N} = 0V, V_{\rm CC}$	
l _{al}	Output Leakage	3.3V	-1	1	-1	2	<1	μA	$V_{\rm IN} = 0V, V_{\rm CC}$	
		5.0V	-1	1	-1	2	<1	μA	$V_{IN} = 0V, V_{CC}$	
L,	Reset Input Current	3.3V		-45		-60	-20	μA		
		5.0V		-55		-70	-30	μA		
I _{cc}	Supply Current	3.3V	······································	10		10	4	mA	@ 8 MHz	[4,5]
		5.0V		15		15	10	mA	@ 8 MHz	[4,5]
		3.3V		15		15	5	mA	@ 12 MHz	[4,5]
		5.0V		20		20	15	mA	@ 12 MHz	[4,5]

Sym	Parameter	V	00			T _A = -4	10° C	Typ @	Units	Conditions	Note
		NOT	e [3]	tö 70 Min	Max Max	io 10 Min	5°C Max	25°C			
CC1	Standby Current	3.3	IV .	<u> </u>	3		3	1	mA	HALT Mode $V_{N} = OV, V_{CC}$ @ 8 MHz	[4,5
		5.0	N		5		5	2.4	mA	HALT Mode $V_{N} = 0V, V_{cc}$ @ 8 MHz	[4,5
		3.3	3V .		4		4	1.5	mA	HALT Mode V _N = OV, V _{cc} Ø 12 MHz	[4,5
		5.0)V		6		6	3.2	mA	HALT Mode V _N = OV, V _{cc} Ø 12 MHz	[4,5
		3.3	3V		2		2	0.8	mA	Clock Divide by 16 @ 8 MHz	[4,5
		5.0)V		4		4	1.8	mA	Clock Divide by 16 @ 8 MHz	[4,5
		3.3	3V		3 .		3	1.2	mA	Clock Divide by 16 @ 12 MHz	[4,5
		5.(W .		5		5	2.5	mA	Clock Divide by 16 @ 12 MHz	[4,5
CC2	Standby Current	3.:			8	-	15	1	μΑ	STOP Mode $V_{N} = OV, V_{CC}$ WDT is not Runni	-
		5.0	V		10		20	2	μA	STOP Mode V _{IN} = OV, V _{CC} WDT is not Runni	[6] ina
		3.:	3V		500		600	310	μΑ	STOP Mode $V_{\rm N} = 0V, V_{\rm cc}$ WDT is Running	[6]
•		5.0	DV		800		1000	600	μΑ	STOP Mode V _№ = OV, V _{cc} WDT is Running	
I _{ALL}	Auto Latch Low Current		3V DV		8 15		10 20	5 11	μΑ μΑ	$\begin{array}{c} 0 V < V_{\rm IN} < V_{\rm CC} \\ 0 V < V_{\rm IN} < V_{\rm CC} \end{array}$	
ı	Auto Latch		3V		-5		-7	-3	μA	$OV < V_{N} < V_{CC}$ $OV < V_{N} < V_{CC}$	
ALH	High Current		0V		-8		-10	-6	μA	$OV < V_{N} < V_{cc}$	
ł	Power On Reset		3V	7	24	7	25	13	ms	ST TIN TOC	
POR			DV .	3	13	3	14	7	ms		
V _{BO}	V _{cc} Bro w n- Out Voltage			1.5	2.65	1.2	2.95	2.1	V	2 MHz max Ext. CLK Freq.	[7]
Note	9:										
[1] I Frequ	cci iency	Тур	Max	Unit							
[2] (Crystal/Resonator External Clock Drive GND=0V 5.0V ±0.5V,3.3V ±0.3V.	3.0 mA 0.3 mA	5 5	mA mA	8 MHz 8 MHz						


•

`

٦

[5] CL1=CL2=100 pF
[6] Same as note [4] except inputs at V_{cc}.
[7] The V_{po} increases as the temperature decreases.

AC CHARACTERISTICS External I/O or Memory Read and Write Timing Diagram

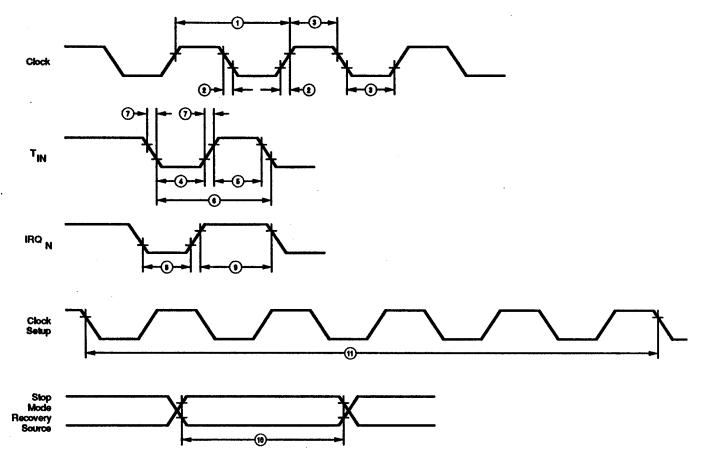
External I/O or Memory Read/Write Timing

•

AC CHARACTERISTICS External I/O or Memory Read and Write Timing Table

No	Symbol	Parameter	V _{cc} Note[3]	8 M	T _A = 0°C	to +70 ⁴ 12 M		8 M	Γ _Α = -40°	C to +10 12 M		Units	Notes
			Note[3]	Min	Max	Min	Max	Min	Max	Min	Max		
1	TdA(AS)	Address Valid to	3.3	55		35		55		35		ns	[2]
		/AS Rising Delay	5.0	55		35		55		35		ns	
2	TdAS(A)	/AS Rising to Address	3.3	70		45		70		45		NS	[2]
	()	Float Delay	5.0	70		45		70		45		ns	
3	TdAS(DR)	/AS Rising to Read	3.3		400		250		400	·····	250	ns	[1,2]
		Data Required Valid	5.0		400		250		400		250	ns	
4	TwAS	/AS Low Width	3.3	80		55		80		55		ns	[2]
			5.0	80		55		80		55		ns	
5	Td	Address Float to	3.3	0		0		0		0		ns	
		/DS Falling	5.0	0		0		0		0		ns	
6	TwDSR	/DS (Read) Low Width	3.3	300		200		300		200		ns	[1,2]
			5.0	300		200		300		200		ns	
7	TwDSW	/DS (Write) Low Width	3.3	165		110		165		110		ns	[1,2]
			5.0	165		110		165		110		ns	
8	TdDSR(DR)	/DS Falling to Read	3.3		260		150		260		150	ns	[1,2]
		Data Required Valid	5.0	•	260		160		260		160	ns	
9	ThDR(DS)	Read Data to	3.3	0		0		0		0		ns	[2]
		/DS Rising Hold Time	5.0	0		0		0		0		ns	
10	TdDS(A)	/DS Rising to Address	3.3	85		45		85		45		ns	[2]
		Active Delay	5.0	95		55		95		55		ns	
11	TdDS(AS)	/DS Rising to /AS	3.3	60		30		60		30		ns	[2]
		Falling Delay	5.0	70		45		70		45		ns	
12	TdR/W(AS)	R//W Valid to /AS	3.3	70		45		70		4 5		ns	[2]
		Rising Delay	5.0	70		45		70		45		ns	
13	TdDS(R/W)	/DS Rising to	3.3	70		45		70		45		ns	[2]
		R//W Not Valid	5.0	70		45		70		45		ns	
14	TdDW(DSW)	Write Data Valid to /DS	3.3	80		55		80		55		ns	[2]
		Falling (Write) Delay	5.0	80		55		80		55		ns	
15	TdDS(DW)	/DS Rising to Write	3.3	70		45		70		45		ns	[2]
		Data Not Valid Delay	5.0	80		55		80		55		ns	
16	TdA(DR)	Address Valid to Read	3.3		475		310		475		310	ns	[1,2]
		Data Required Valid	5.0		475		310		475		310	ns	
17	TdAS(DS)	/AS Rising to	3.3	100		65		100		65		ns	[2]
		/DS Falling Delay	5.0	100		65		100		65		ns	
18	TdDI(DS)	Data Input Setup to	0.0	115		115		115		115		ns	[1,2]
	- -	/DS Rising	5.0	75		75		75		75		ns	
19	TdDM(AS)	/DM Valid to /AS	3.3	55		35		55		35		ns	[2]
	• •	Falling Delay	5.0	55		35		55		35		ns	

Notes:


[1] When using extended memory timing add 2 TpC.

[2] Timing numbers given are for minimum TpC. [3] $5.0V \pm 0.5V$, $3.3V \pm 0.3V$.

Standard Test Load

All timing references use 0.9 $\rm V_{cc}$ for a logic 1 and 0.1 $\rm V_{cc}$ for a logic 0.

AC CHARACTERISTICS Additional Timing Diagram

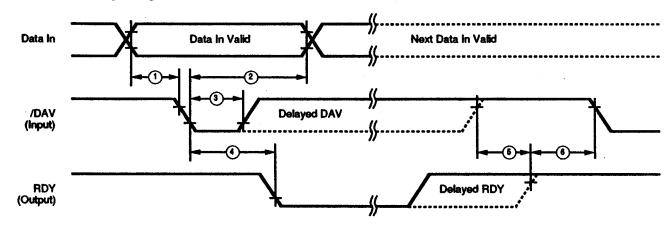
Additional Timing

AC CHARACTERISTICS Additional Timing Table

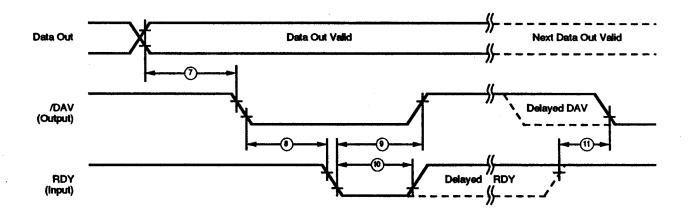
No	Symbol	Parameter	V _{cc}		T, = 0°C	to 70°(;		T _A = -40°C	to 105°	С	Units	Notes
	·		Note[6]	8 I Min	MH2 Max	12 MHz Min Max		8 MHz Min Max		12 MHz Min Max			
1	ТрС	Input Clock Period	3.3V	125	100000	83	100000	125	100000	83	100000	ns	[1]
			5.0V	125	100000	83	100000	125	100000	83	100000	ns	[1]
2	TrC,TfC	Clock Input Rise	3.3V		25		15		25		15	ns	[1]
		and Fall Times	5.0V		25		15		25		15	ns	[1]
3	TwC	Input Clock Width	3.3V	37		26		37	·	26		ns	[1]
			5.0V	37		26		37		26		ns	[1]
4 1	TwTinL	Timer Input	3.3V	100		100		100		100		ns	[1]
		Low Width	5.0V	70		70		70		70		ns	[1]
5	TwTinH	Timer Input	3.3V	3TpC	;	3TpC	;	3TpC	; .	3TpC	;	· · · · · · · · · · · · · · · · · · ·	[1]
		High Width	5.0V	3TpC	;	3TpC	;	3TpC	;	3TpC			[1]
6	TpTin	Timer Input Period	3.3V	8TpC	1 9	8TpC		8TpC	;	8TpC	;		[1]
			5.0V	8TpC	•	8TpC		8TpC	;	8TpC	;		[1]
7	TrTin,TfTin	Timer Input Rise	3.3V		100		100		100		100	ns	[1]
		and Fall Timers	5.0V		100		100		100		100	ns	[1]
8 A	TwiL	Interrupt Request	3.3V	100		100		100		100		ns	[1,2]
		Low Time	5.0V	70		70		70		70		ns	[1,2]
8B	TwlL	Int. Request	3.3V	3TpC	;	3TpC	;	3TpC	;	3TpC	;		[1,3]
		Low Time	5.0V	3TpC	;	3TpC		3TpC	;	3TpC	;		[1,3]
9	TwiH	Interrupt Request	3.3V	3TpC	;	3TpC	;	3TpC	;	3TpC	;		[1,2]
		Input High Time	5.0V	3TpC	;	3TpC		3TpC	;	3TpC	;		[1,2]
10	Twsm	STOP Mode	3.3V	12		12		12		12		ns	
		Recovery Width Spec	5.0V	12		12		12		12		ns	
		· ·	3.3V	5TpC	;								[7]
			5.0V	5TpC	;								[8]

AC CHARACTERISTICS Additional Timing Table (Continued)

No	Symbol	Parameter	V _{cc}		T_ = 0°C	; to 70°C	;		T_ = -40°(C to 105	°C	Units	Notes
			Note[6]	8 N	A Hz		12 MHz		Hz	12			
				Min	Max	Min	Max	Min	Max	Min	Max		
11	Tost	Oscillator	3.3V		5TpC		5TpC		5TpC		5TpC		[4]
		Startup Time	5.0V		5TpC		5TpC		5TpC		5TpC		[4]
12	Twdt	Watchdog Timer	3.3V	10	•	10	•	10	•	10	•	ms	D0 = 0[5]
		Delay Time	5.0V	5		5		5		5		ms	D1 = 0 [5]
		-	3.3V	30		30		30		30		ms	D0 = 1 [5]
			5.0V	15		15		15		15		ms	D1 = 0 [5]
			3.3V	50		50		50	<u>,</u>	50		ms	D0 = 0 [5]
			5.0V	25		25		25		25		ms	D1 = 1 [5]
			3.3V	200		200		200		200		ms	D0 = 1 [5]
			5.0V	100		100		100		100		ms	D1 = 1 [5]


Notes:

٠


Notes: [1] Timing Reference uses $0.9 V_{cc}$ for a logic 1 and $0.1 V_{cc}$ for a logic 0. [2] Interrupt request via Port 3 (P31-P33). [3] Interrupt request via Port 3 (P30). [4] SMR-D5 = 0 [5] Reg. WDTMR [6] $5.0V \pm 0.5V$, $3.3V \pm 0.3V$ [7] Reg. SMR - D5=0 [8] Reg. SMR - D5=1

[8] Reg. SMR - D5=1

AC CHARACTERISTICS Handshake Timing Diagrams

Input Handshake Timing

Output Handshake Timing

AC CHARACTERISTICS Handshake Timing Table

No	Symbol	Parameter	V _{oc}	•	T_ = 0°C	To 70°	C	T,	= -40° C	To 105°	C		
	0,		Note[1]	1] 8 MHz 12 MHz				8 N	NHz	12 N	IHz	Data	
				Min	Max	Min	Max	Min	Max	Min	Max	Direction	
1	TsDI(DAV)	Data In Setup Time	3.3V	0		0		0		0		IN	
•			5.0V	0		0		0		0		IN	
2	ThDI(DAV)	Data In Hold Time	3.3V	160		160		160		160		IN	
• .			5.0V	115		115		115		115		IN	
3	TwDAV	Data Available Width	3.3V	155		155		155		155		IN	
•			5.0V	110		110		110		110		IN	
4	TdDAVI(RDY)	DAV Falling to RDY	3.3V		160		160		160		160	IN	
-	100/11/(101)	Falling Delay	5.0V		115		115		115		115	IN	
5	TdDAVHd(RDY)	DAV Rising to RDY	3.3V		120	<u></u>	120		120		120	IN	
v		Falling Delay	5.0V		80		80		80		80	IN	
6	TdDO(DAV)	RDY Rising to DAV	3.3V	0		0		0		. 0		łN	
Ū	1000(0111)	Falling Delay	5.0V	0		0		0		0		IN	
7	TcLDAVO(RDY)	Data Out to DAV	3.3V	63		42		63		42		OUT	
•		Falling Delay	5.0V	63		42		63		42		OUT	
8	TcLDAV0(RDY)	DAV Falling to RDY	3.3V	0		0		0		0		OUT	
Ŭ		Falling Delay	5.0V	0		0		0		0		OUT	
9	TdRDY0(DAV)	RDY Falling to DAV	3.3V		160		160		160		160	OUT	
		Rising Delay	5.0V		115		115		115		115	OUT	
10	TwRDY	RDY Width	3.3V	110		110		110		110		OUT	
			5.0V	80		80		80		80		OUT	
11	TdRDY0d(DAV)	RDY Rising to DAV	3.3V		110	<u></u>	110		110		110	OUT	
••		Falling Delay	5.0V		80		80		80		80	OUT	

Note:

[1] $5.0 \text{ V} \pm 0.5 \text{V}$, $3.3 \text{ V} \pm 0.3 \text{V}$

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at http://support.zilog.com.