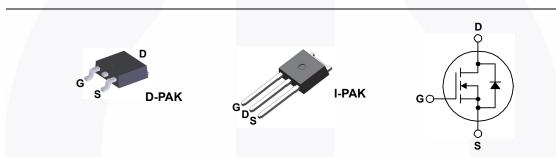


Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d


FQD2N100 / FQU2N100 N-Channel QFET[®] MOSFET 1000 V, 1.6 A, 9 Ω

Description

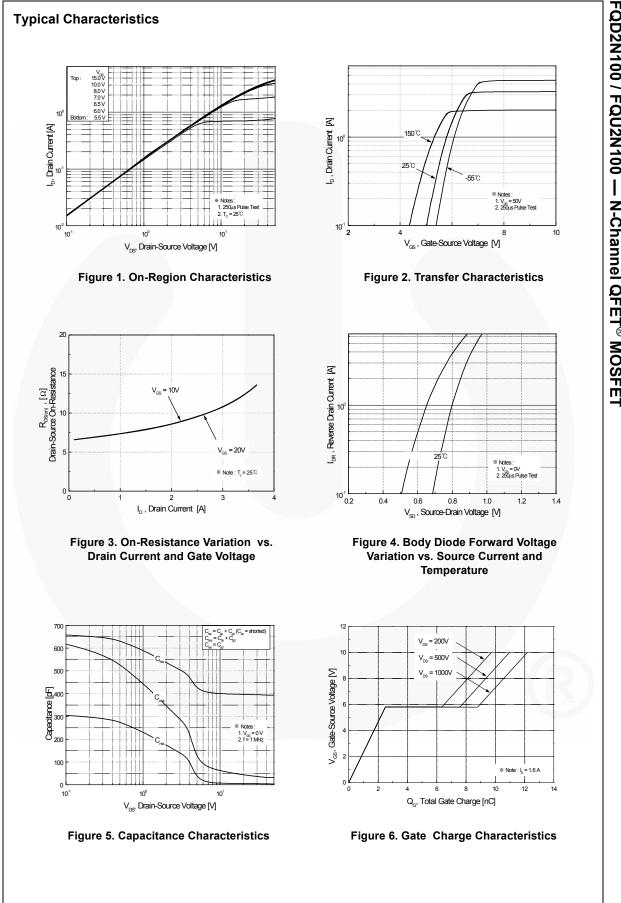
This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

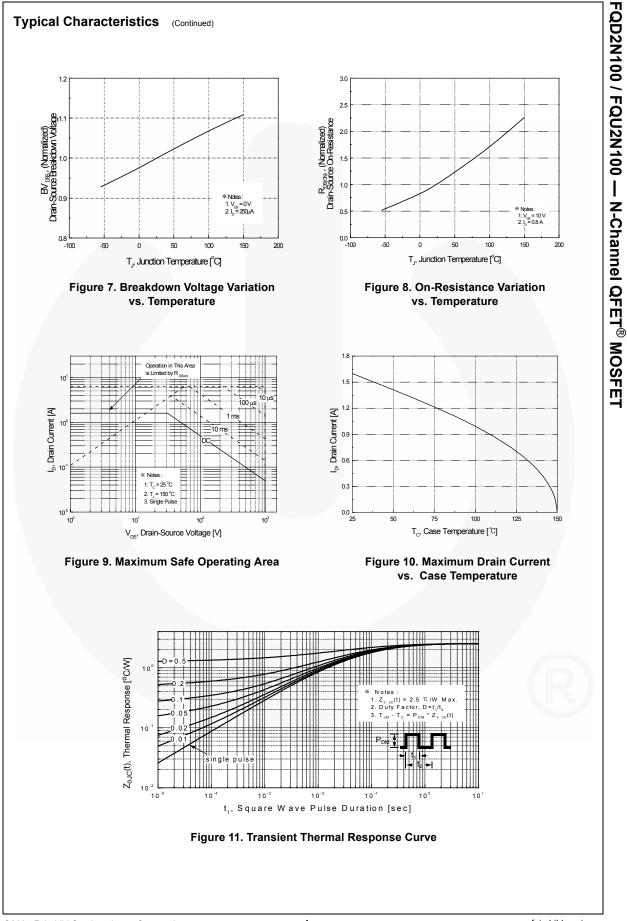
Features

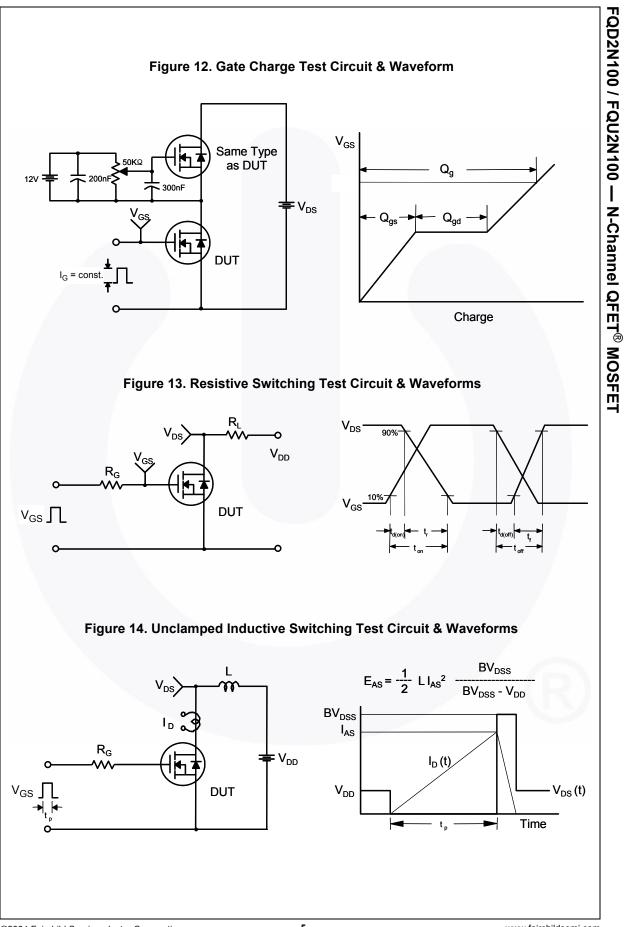
- 1.6 A, 1000 V, R_{DS(on)} = 9 Ω (Max.)@ V_{GS} = 10 V, I_D = 0.8 A
- Low Gate Charge (Typ. 12 nC)
- Low Crss (Typ. 5 pF)
- 100% Avalanche Tested
- RoHS Compliant

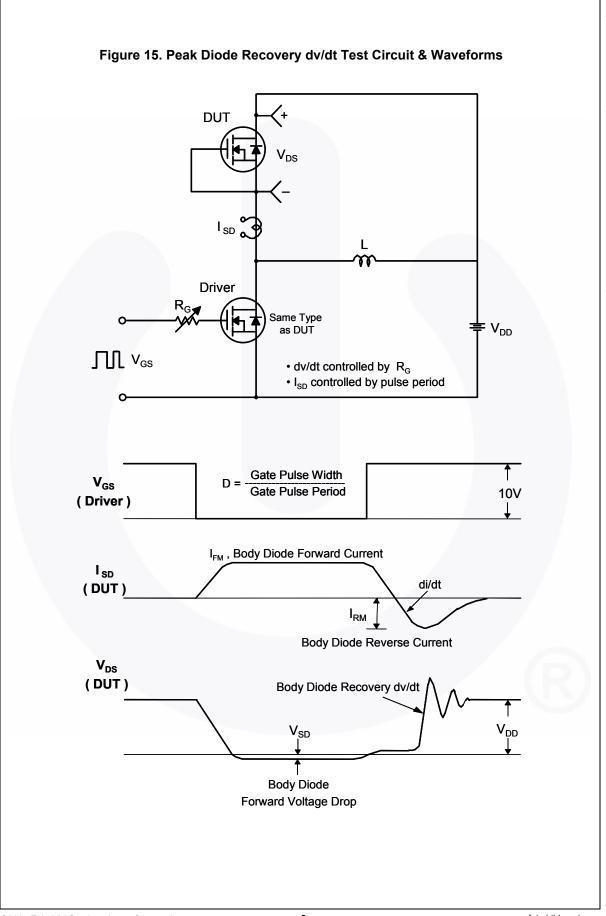
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

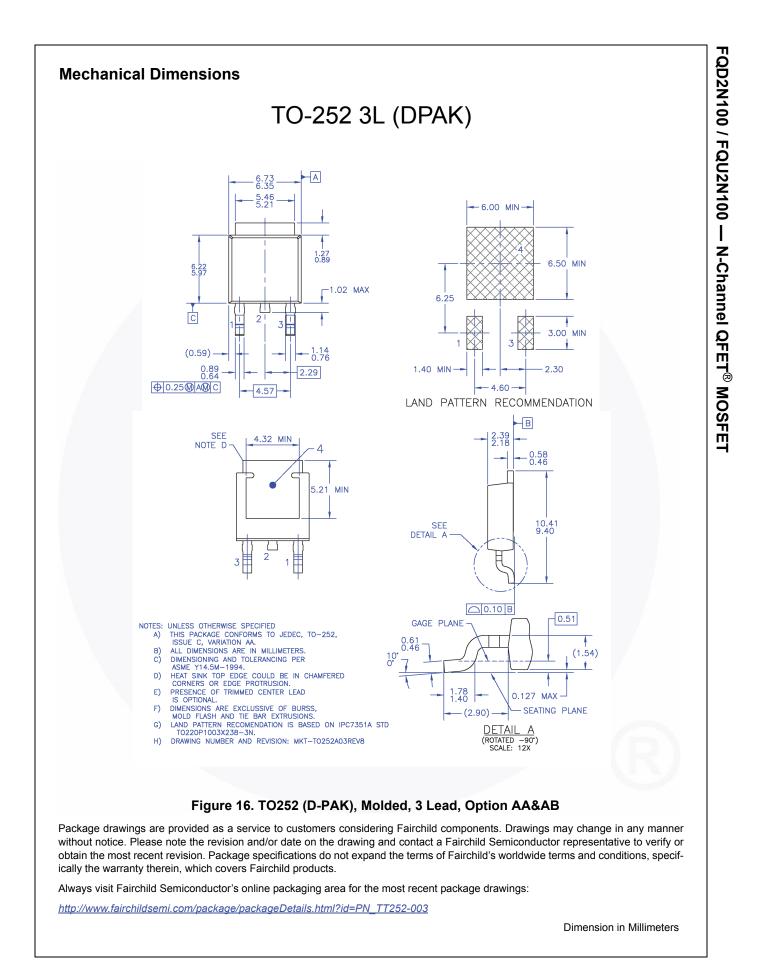
Symbol	Parameter		FQD2N100TM / FQU2N100TU	Unit
V _{DSS}	Drain-Source Voltage		1000	V
I _D	Drain Current - Continuous (T _C = 25°C)		1.6	А
	- Continuous (T _C = 100	1.0	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	6.4	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	160	mJ
I _{AR}	Avalanche Current (Note 1)		1.6	А
E _{AR}	Repetitive Avalanche Energy (Note 1)		5.0	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		5.5	V/ns
P_D Power Dissipation (T _A = 25°C) *			2.5	W
	Power Dissipation ($T_C = 25^{\circ}C$)		50	W
	- Derate above 25°C		0.4	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

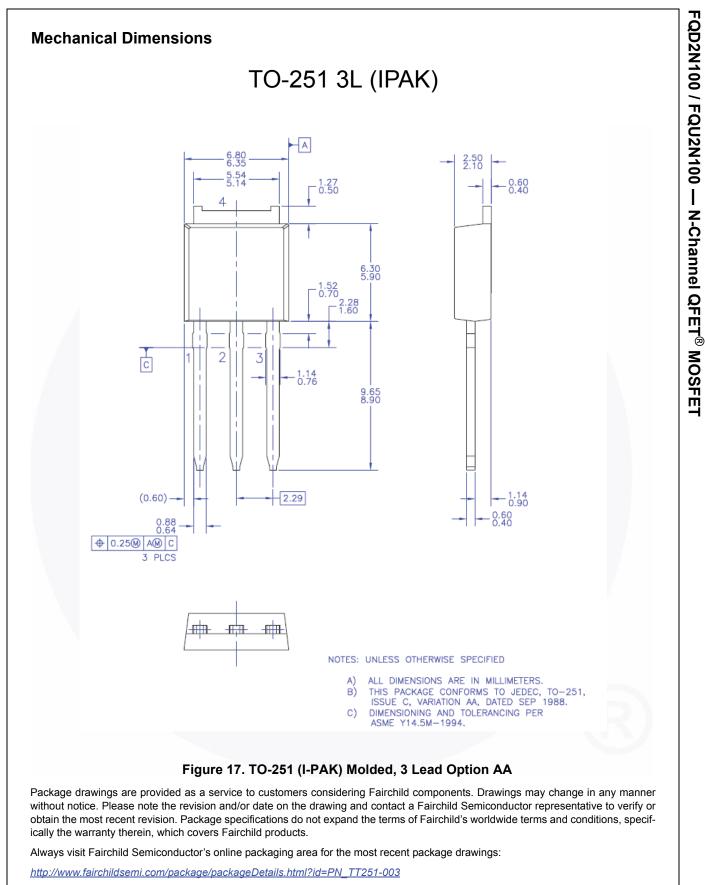

Thermal Characteristics


Symbol	Parameter	FQD2N100TM FQU2N100TU	Unit
R_{\thetaJC}	Thermal Resistance, Junction to Case, Max.	2.5	
D	Thermal Resistance, Junction to Ambient (minimum pad of 2 oz copper), Max.	110	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (* 1 in ² pad of 2 oz copper), Max.	50	


October 2013


ff Characteristics Vos Drain-Source Breakdown Voltage $V_{GS} = 0$ V, $I_D = 250 \ \mu$ A 1000 0 3V Dss AT_J Breakdown Voltage Temperature AT_J $I_D = 250 \ \mu$ A, Referenced to 25°C 0.976 V SS Zero Gate Voltage Drain Current $V_{DS} = 1000 \ V, V_{GS} = 0 \ V$ 10 10 SSF Gate-Body Leakage Current, Forward $V_{SS} = 30 \ V, V_{DS} = 0 \ V$ 100 10 SSR Gate-Body Leakage Current, Reverse $V_{GS} = 30 \ V, V_{DS} = 0 \ V$ 100 10 SSR Gate Threshold Voltage $V_{DS} = 30 \ V, V_{DS} = 0 \ V$ -100 10 In Characteristics Sa(th) Gate Threshold Voltage $V_{DS} = V_{GS} \ I_D = 250 \ \mu$ A 3.0 5.0 0 In Characteristics Sa(th) Sattic Drain-Source $V_{DS} = 50 \ V, I_D = 0.8 \ A$ 1.9 In put Capacitance V_{DS} = 50 V, I_D = 0.8 \ A 1.9 5.5 5.6 \ 5.5 5.6 \ 5.5 5.6 \ 5.5	evice i	larking	Device	Package	ackage Reel Size		Tape W	idth	Qua	ntity
			DPAK	DPAK 330 mm		16 mm		2500		
ProblParameterTest ConditionsMinTypMaxUff Characteristics V_{DSS} Drain-Source Breakdown Voltage $V_{GS} = 0 V, I_D = 250 \mu A$, Referenced to $25^{\circ}C$ 0.976 V ΔT_J Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, Referenced to $25^{\circ}C$ 0.976 VSSZero Gate Voltage Drain Current $V_{DS} = 800 V, V_{CS} = 0 V$ 100 1SSRGate-Body Leakage Current, Forward $V_{GS} = 30 V, V_{DS} = 0 V$ 100 1SRGate-Body Leakage Current, Reverse $V_{GS} = -30 V, V_{DS} = 0 V$ 100 1SRGate Threshold Voltage $V_{GS} = -30 V, V_{DS} = 0 V$ -100 10SRGate Threshold Voltage $V_{GS} = -30 V, V_{DS} = 0 V$ -100 10SRGate Threshold Voltage $V_{DS} = 50 V, V_{DS} = 0 V$ -100 10SRStatic Drain-Source On-Resistance $V_{DS} = 50 V, I_D = 0.8 A$ 1.9 SSForward Transconductance $V_{DS} = 50 V, I_D = 2.0 A$ -400 520 SSReverse Transfer Capacitance $V_{DS} = 500 V, I_D = 2.0 A,$ 13 35 SSReverse Transfer Capacitance $V_{DS} = 500 V, I_D = 2.0 A,$ 12 15.5 SSGate-Drain Charge $V_{DS} = 800 V, I_D = 2.0 A,$ 12 15.5	FQU2	N100	FQU2N100TU	IPAK	PAK -		-		70	
ymbolParameterTest ConditionsMinTypMaxUff Characteristics V_{DSS} Drain-Source Breakdown Voltage $V_{GS} = 0 V, I_D = 250 \mu A$, Referenced to $25^{\circ}C$ 0.976 V ΔT_J Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, Referenced to $25^{\circ}C$ 0.976 VSSZero Gate Voltage Drain Current $V_{DS} = 1000 V, V_{CS} = 0 V$ 100 1SSFGate-Body Leakage Current, Forward $V_{GS} = 30 V, V_{DS} = 0 V$ 100 1SRGate-Body Leakage Current, Reverse $V_{GS} = -30 V, V_{DS} = 0 V$ 100 1SRGate Threshold Voltage $V_{GS} = -30 V, V_{DS} = 0 V$ -100 10In CharacteristicsStatic Drain-Source On-Resistance $V_{GS} = 10 V, I_D = 0.8 A$ 7.1 9SSForward Transconductance $V_{DS} = 50 V, I_D = 0.8 A$ 1.9 ssInput Capacitance Turn-On Rise Time $V_{DS} = 500 V, I_D = 2.0 A,$ 400 520 ssReverse Transfer Capacitance $V_{DS} = 500 V, I_D = 2.0 A,$ 13 35 sgTurn-On Rise Time $R_G = 25 \Omega$ 12 15.5 10 gTurn-Off Fall Time(Note 4) 35 80 25 60 gGate-Drain Charge $V_{DS} = 10 V$ (Note 4)										
ff Characteristics VDSS AT_U Drain-Source Breakdown Voltage $V_{GS} = 0$ V, $I_D = 250 \ \mu$ A, Referenced to 25°C 0.976 V SN Breakdown Voltage Temperature AT_U $I_D = 250 \ \mu$ A, Referenced to 25°C 0.976 V SS Zero Gate Voltage Drain Current $V_{DS} = 1000 \ V, V_{GS} = 0 \ V$ 10 100 SSF Gate-Body Leakage Current, Forward $V_{CS} = 30 \ V, V_{DS} = 0 \ V$ 100 100 SSR Gate-Body Leakage Current, Reverse $V_{CS} = -30 \ V, V_{DS} = 0 \ V$ 100 100 In Characteristics 0 -100 10 100 <td>ectri</td> <td>cal Ch</td> <td>aracteristics T_c = 2</td> <td>25°C unless otherw</td> <td>ise noted</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ectri	cal Ch	aracteristics T _c = 2	25°C unless otherw	ise noted					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ymbol		Parameter	Т	Test Conditions		Min	Тур	Max	Unit
	ff Cha	aracteri	stics							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1		V _{GS} = 0 V	, I _D = 250 μA		1000			V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
Zero Gate Voltage Drain Current $V_{DS} = 800 V, T_C = 125^\circ C$ 100 1 SSF Gate-Body Leakage Current, Forward $V_{GS} = 30 V, V_{DS} = 0 V$ 100 1 SSR Gate-Body Leakage Current, Reverse $V_{GS} = 30 V, V_{DS} = 0 V$ 100 1 n Characteristics ss Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu A$ 3.0 5.0 SS(m) Static Drain-Source On-Resistance $V_{GS} = 10 V, I_D = 0.8 A$ 7.1 9 ss Forward Transconductance $V_{DS} = 50 V, I_D = 0.8 A$ 1.9 ynamic Characteristics ss Input Capacitance $V_{DS} = 25 V, V_{GS} = 0 V, f = 1.0 MHz$ 400 520 ss Notput Capacitance $V_{DS} = 25 \Omega, V_{GS} = 0 V, f = 1.0 MHz$ 400 520 ss Reverse Transfer Capacitance $F = 1.0 MHz$ 13 35 30 70 13 </td <td></td> <td></td> <td>U 1</td> <td>I_D = 250 μ</td> <td>IA, Referenced 1</td> <td>to 25°C</td> <td></td> <td>0.976</td> <td></td> <td>V/°C</td>			U 1	I _D = 250 μ	IA, Referenced 1	to 25°C		0.976		V/°C
VDS 800 V, IC 12 25 C 100 100 SSF Gate-Body Leakage Current, Forward VGS 30 V, VDS 100 100 SSR Gate-Body Leakage Current, Reverse VGS 30 V, VDS 0 V 100 100 m Characteristics 23(th) Gate Threshold Voltage VDS VGS -30 V, VDS 0 V 100 10 100 10 100	SS	Zara Ca	to Valtage Drain Current	V _{DS} = 100	00 V, V _{GS} = 0 V				10	μA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Zero Ga	ne vonage Drain Current	20	U U				100	μA
n Characteristics $33(th)$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$ 3.0 5.0 $33(th)$ Static Drain-Source On-Resistance $V_{GS} = 10 \ V$, $I_D = 0.8 \ A$ 7.1 9 s Forward Transconductance $V_{DS} = 50 \ V$, $I_D = 0.8 \ A$ 1.9 ynamic Characteristics ss Input Capacitance $V_{DS} = 50 \ V$, $I_D = 0.8 \ A$ $400 \ 520 \ D$ ss Output Capacitance $V_{DS} = 25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ $400 \ 522 \ D$ ss Reverse Transfer Capacitance $V_{DS} = 25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ $400 \ 522 \ D$ ss Reverse Transfer Capacitance $V_{DS} = 25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ $5 \ 6.5$ witching Characteristics $V_{DD} = 500 \ V$, $I_D = 2.0 \ A$, $Turn-On Rise Time13 \ 35 \on)Turn-On Rise TimeV_{DS} = 800 \ V, I_D = 2.0 \ A,V_{GS} = 10 \ VV_{GS} = 10 \ VV_{S} = 800 \ V, I_D = 2.0 \ A,V_{GS} = 10 \ VV_{CS} = 10 \ VV_{OS} = 10 \ V$	SSF	Gate-Bo	ody Leakage Current, Forwar						100	nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SSR	Gate-Bo	ody Leakage Current, Revers	e V _{GS} = -30 V, V _{DS} = 0 V				-100	nA	
S3(m) Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$ 3.0 $$ 5.0 S3(on) Static Drain-Source On-Resistance $V_{GS} = 10 \ V, I_D = 0.8 \ A$ $$ 7.1 9 s Forward Transconductance $V_{DS} = 50 \ V, I_D = 0.8 \ A$ $$ 1.9 $$ ynamic Characteristics VDS $50 \ V, I_D = 0.8 \ A$ $$ 1.9 $$ ynamic Characteristics VDS $50 \ V, I_D = 0.8 \ A$ $$ 1.9 $$ ynamic Characteristics VDS $250 \ V, I_D = 0.8 \ A$ $$ $1.9 \$ $$ ynamic Characteristics VDS $250 \ V, I_D = 0.8 \ A$ $$ $400 \ 520 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$ $50 \$	n Cha	aracteria	stics							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				$V_{DS} = V_{G}$	_S , I _D = 250 μA		3.0		5.0	V
On-ResistanceVDSForward TransconductanceVDS $= 0.8 \text{ A}$ $= 1.9$ $= -$ ynamic CharacteristicsssInput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $= 400$ 520 ssOutput Capacitance $f = 1.0 \text{ MHz}$ $= 400$ 520 ssReverse Transfer Capacitance $f = 1.0 \text{ MHz}$ $= 5$ 6.5 witching Characteristicson)Turn-On Delay Time $V_{DD} = 500 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $= 1.3$ 35 $Turn-On Rise Time$ $R_G = 25 \Omega$ $= 30$ 70 off)Turn-Off Delay Time $N_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $= 25$ 60 g_3 Gate-Charge $V_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $= 12$ 15.5 10 g_3 Gate-Source Charge $V_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $= 2.5$ $= 10$ g_4 Total Gate Charge $V_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $= 2.5$ $= 10$ g_4 Gate-Drain Charge $V_{OS} = 10 \text{ V}$ $(Note 4)$ $= 2.5$ $= 10$ g_4 Gate-Drain Charge $W_{OS} = 10 \text{ V}$ $(Note 4)$ $= 6.5$ $= 10$ g_4 Maximum Continuous Drain-Source Diode Forward Current $= $ 1.5 10					-			7.1	9	Ω
ynamic CharacteristicsssInput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz400520ssReverse Transfer Capacitancef = 1.0 MHz40052witching Characteristicson)Turn-On Delay Time $V_{DD} = 500 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ Turn-On Rise Time1335off)Turn-On Rise Time $R_G = 25 \Omega$ 3070off)Turn-Off Delay Time $(Note 4)$ 3580off)Turn-Off Fall Time $(Note 4)$ 1215.515gsGate-Source Charge $V_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ 1215.516maintee Source ChargegdGate-Drain Charge $V_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ 										S
ssInput Capacitance $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1.0 MHz400520 200 sss Output Capacitancef = 1.0 MHz40052 300 sss Reverse Transfer Capacitancef = 1.0 MHz56.5witching Characteristics 100 sss 100 sss 1335 300 sss Turn-On Delay Time $V_{DD} = 500 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $R_G = 25 \Omega$ 1335 300 sss Turn-Off Delay Time $V_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $V_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ 1215.510 300 sss Gate-Source Charge $V_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ 1215.510 300 sss 300 sss 10 V $(Note 4)6.510300 \text{ ssss}300 \text{ ssss}10 \text{ V}(Note 4)1.510300 \text{ ssss}10 \text{ V}(Note 4)1.510300 \text{ sssss}10 \text{ V}(Note 4)1.510300 \text{ sssss}10 \text{ V}(Note 4)1.510300 \text{ ssssss}10 \text{ V}(Note 4)1.510300 ssssssssssssssssssssssssssssssssss$	·s	roiward	Thansconductance	VDS - 50	v, i <u>D</u> = 0.0 A			1.9		3
Output Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ 4052Image: rest section of the section o	ynam	ic Char	acteristics							
DescOutput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ 4052SSReverse Transfer Capacitancef = 1.0 \text{ MHz}56.5witching Characteristicson)Turn-On Delay Time $V_{DD} = 500 \text{ V}, I_D = 2.0 \text{ A}, R_G = 25 \Omega$ 1335off)Turn-Off Delay Time $R_G = 25 \Omega$ 3070off)Turn-Off Delay Time(Note 4)3580gaTotal Gate Charge $V_{DS} = 800 \text{ V}, I_D = 2.0 \text{ A}, V_{GS} = 10 \text{ V}$ 1215.510gaGate-Source Charge $V_{OS} = 10 \text{ V}$ (Note 4)6.510rain-Source Diode Characteristics and Maximum RatingsMaximum Continuous Drain-Source Diode Forward Current1.51.5	ss	Input Ca	apacitance					400	520	pF
rssReverse Transfer CapacitanceIPP 1.0 MH256.5witching Characteristicson)Turn-On Delay Time $V_{DD} = 500 \text{ V}, I_D = 2.0 \text{ A},$ $R_G = 25 \Omega$ 1335off)Turn-On Rise Time $R_G = 25 \Omega$ 3070off)Turn-Off Delay Time $$ 2560Turn-Off Fall Time $(Note 4)$ 3580gTotal Gate Charge $V_{DS} = 800 \text{ V}, I_D = 2.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ 1215.510gadGate-Drain Charge $V_{OS} = 10 \text{ V}$ $V_{GS} = 10 \text{ V}$ (Note 4)6.510rain-Source Diode Characteristics and Maximum RatingsMaximum Continuous Drain-Source Diode Forward Current1.51.5		Output (Capacitance					40	52	pF
Turn-On Delay Time $V_{DD} = 500 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $R_G = 25 \Omega$ 1335Turn-On Rise Time $R_G = 25 \Omega$ 3070off)Turn-Off Delay Time $$ 2560Turn-Off Fall Time $(Note 4)$ 3580gTotal Gate Charge $V_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ 1215.5gdGate-Source Charge $V_{OS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ 1215.510rain-Source Diode Characteristics and Maximum RatingsMaximum Continuous Drain-Source Diode Forward Current1.51.5		Reverse	e Transfer Capacitance	1 = 1.0 IVIF				5	6.5	pF
Turn-On Delay Time $V_{DD} = 500 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $R_G = 25 \Omega$ 1335Turn-On Rise Time $R_G = 25 \Omega$ 3070(off)Turn-Off Delay Time $$ 2560Turn-Off Fall Time (Note 4) 3580gTotal Gate Charge $V_{DS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ 1215.5gdGate-Source Charge $V_{OS} = 800 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ 1215.510rain-Source Diode Characteristics and Maximum RatingsMaximum Continuous Drain-Source Diode Forward Current1.51.5	witch	ina Cha	ractoristics							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				V _{DD} = 500	55 5			13	35	ns
Image: model of fight state Turn-Off Delay Time 25 60 Turn-Off Fall Time (Note 4) 35 80 35 80 12 15.5 10 25 60 12 15.5 10 12 15.5 10 12 15.5 10 12 15.5 10 12 15.5 10 12 15.5 10 12 15.5 10 12 15.5 10 12 15.5 10 12 15.5 10 12 15.5 10 12 15.5 10 15 10 15 10 10 10 10 10 10 10 10 10 10 10 10 <td>011)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ns</td>	011)									ns
Turn-Off Fall Time (Note 4) 35 80 g Total Gate Charge V _{DS} = 800 V, I _D = 2.0 A, 12 15.5 1 gs Gate-Source Charge V _{DS} = 800 V, I _D = 2.0 A, 2.5 1 gd Gate-Drain Charge V _{GS} = 10 V (Note 4) 6.5 1 rain-Source Diode Characteristics and Maximum Ratings Maximum Continuous Drain-Source Diode Forward Current 1.5 1	off)									ns
Image: game Total Gate Charge V _{DS} = 800 V, I _D = 2.0 A, 12 15.5 Image gs Gate-Source Charge V _{DS} = 800 V, I _D = 2.0 A, 2.5 12 15.5 Image gd Gate-Drain Charge V _{GS} = 10 V (Note 4) 6.5 Image rain-Source Diode Characteristics and Maximum Ratings Maximum Continuous Drain-Source Diode Forward Current 1.5	011)				(Note 4)					ns
gs Gate-Source Charge VDS - 800 V, ID - 2.0 A, VGS = 200 V, ID - 2.0 A, VGS = 10 V 2.5 10 gd Gate-Drain Charge VGS = 10 V (Note 4) 6.5 10 rain-Source Diode Characteristics and Maximum Ratings Maximum Continuous Drain-Source Diode Forward Current 1.5		Total Ga	ate Charge					12	15.5	nC
gd Gate-Drain Charge GS 10 V (Note 4) 6.5 1 rain-Source Diode Characteristics and Maximum Ratings Maximum Continuous Drain-Source Diode Forward Current 1.5	1		U U					2.5		nC
rain-Source Diode Characteristics and Maximum Ratings Maximum Continuous Drain-Source Diode Forward Current 1.5		Gate-Sc		V _{GS} = 10	V	(Note 4)				nC
Maximum Continuous Drain-Source Diode Forward Current 1.5	gs		ain Charge						7	1
Maximum Continuous Drain-Source Diode Forward Current 1.5	gs		ain Charge							
M Maximum Pulsed Drain-Source Diode Forward Current 6.0	gs gd	Gate-Dr		and Maxin	num Ratings	5				
	gs gd	Gate-Dr	Diode Characteristics			5			1.5	Α
	_{gs} gd rain-S	Gate-Dr Gource I Maximu	Diode Characteristics m Continuous Drain-Source	Diode Forward	l Current	5				A A
	_{gs} gd rain-S M	Gate-Dr Gource I Maximu Maximu	Diode Characteristics m Continuous Drain-Source m Pulsed Drain-Source Diod	Diode Forward e Forward Cur	l Current	;			6.0	
$\frac{1}{100} \text{ Reverse Recovery Charge} \qquad \frac{1}{100} \text{ A}/\mu \text{s} \qquad \frac{1}{100} \text{ A}/\mu \text{s}$	_{gs} ^{gd} rain-S	Gate-Dr Gource I Maximu Maximu Drain-So	Diode Characteristics m Continuous Drain-Source m Pulsed Drain-Source Diod ource Diode Forward Voltage	Diode Forward e Forward Cur e V _{GS} = 0 V	l Current rrent /, I _S = 1.6 A	•			6.0 1.4	А


4. Essentially independent of operating temperature



Dimension in Millimeters

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM ACcuPower TM AX-CAP [®] * BitSiC TM Build it Now TM CorePOWER TM CorePOWER TM CROSSVOL7 TM CTL TM CUTTM CUTTM CUTTM CUTCH ECOSPARK [®] EfficentMax TM ESBC TM ESBC TM Fairchild [®] Fairchild [®] Fairchi	F-PFS™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Loude and Better™ MegaBuck™ MICROCOUPLER™ MICROCOUPLER™ MICroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™	PowerTrench [®] PowerXS™ Programmable Active Droop™ QFET [®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM [®] STEALTH™ SuperFET [®]	Sync-Lock™ EGENERAL TinyBoost® TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPWM™ TinyPWM™ TinyPWM™ TinyPWM™ TinyPWM™ TriFault Detect™ TRUECURRENT®* µSerDes™ UHC®
Fairchild [®]	MicroFET™ MicroPak™ MicroPak2™ MillerDrive™	SMART START™ Solutions for Your Success™ SPM [®] STEALTH™	μSerDes™ ⊮ SerDes [∞]

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC